
User’s Guide

Publication number E2699-97001
October 2003

© Copyright Agilent Technologies 2003
 All Rights Reserved

My Infiniium Integration
Package

[

Contents
1 E2699A My Infiniium Integration Package Features

Checking for the Installed License 1-2
QuickExecute and Extensible Graphical User Interface 1-4

Example 1 - Scripting GPIB Commands 5
Example 2 - Mapping A Control To The Front Panel 6
Example 3 - Creating a Dialog Box with Custom Measurement Results 9
Example 4 - The Snapshot Measurement Utility 19

Adding Menu Items to Infiniium 1-20

2 Reference Guide

Comment Entries 2-2
EGUI_END_ITEM; 2-2
EGUI_FLAGS 2-2
EGUI_ITEM_MENU 2-3
MENU_PATH 2-3
MENU_POS 2-4
MENU_RUN 2-5
MENU_RUN_ARG 2-5
MENU_SEP 2-6
Programming Tips and Rules 2-7
Contents-1

Contents-2

1

E2699A My Infiniium Integration
Package Features

E2699A My Infiniium Integration Package Features
Checking for the Installed License
Checking for the Installed License

The My Infiniium Integration Package can only be installed on Infiniium
54830 series and 54850 series oscilloscopes with A.03.10 or later version of
system software (Windows XP Professional).

Before you can use the My Infiniium Integration Package, the license must
be installed on your Infiniium oscilloscope. To check for the installed
license use the following instructions.

1 Select the Help menu on the Infiniium menu bar.
2 Select About Infiniium from the pull-down menu.
3 In the About Infiniium dialog box in the SYSTEM CONFIGURATION

area there is an Options Installed line. If you see eGUI in the list of
installed options then the My Infiniium Integration Package has
been installed.
1-2

E2699A My Infiniium Integration Package Features
Checking for the Installed License
Figure 1-1

Option identifier
1-3

E2699A My Infiniium Integration Package Features
QuickExecute and Extensible Graphical User Interface
QuickExecute and Extensible Graphical User
Interface

The My Infiniium Integration Package consists of two capabilities:

• QuickExecute

• Extensible Graphical User Interface (eGUI)

These capabilities allow you to extend the power of your oscilloscope by
letting you launch your application directly from Infiniium’s front panel or
from Infiniium’s graphical user interface.

QuickExecute is an additional user choice to the QuickMeas+ feature.
When this option is selected, each time the QuickMeas+ button on the front
panel is pressed, Infiniium will run an executable file that you have chosen.

The Extensible Graphical User Interface (eGUI) provides a method to add
menu items to the Infiniium menu system. These menu entries that you
add can run executable programs that you create.

You have great flexibility in the types of programs that can be run from
QuickExecute or eGUI. Any program that can be run under Windows XP
is a candidate for these features. You can develop and debug your programs
on an external PC, using the language and tools of your choice.

Your programs can control the oscilloscope using the Agilent I/O Libraries
which can be found on the “Manuals, Example Programs, and SICL/VISA
Library Installation” CD-ROM that came with your oscilloscope. You can
control the oscilloscope using either the GPIB or LAN physical interface.
When run inside the oscilloscope, you use the special internal LAN address
"lan[localhost]:inst0". For example, your program can instruct the
oscilloscope to acquire data and then your program can retrieve it, via the
hard disk or directly using the I/O commands. Then your program can
perform the custom analysis and display the results via a dialog box.

For higher-level oscilloscope control, use the Infiniium IVI-COM driver in
your program. The IVI-COM driver takes full advantage of
industry-accepted standards and is compatible programming environments
such as Microsoft Visual Studio, Agilent VEE Pro, and National Instruments
LabVIEW. The Infiniium IVI-COM driver provides ease of use, higher
performance, and interchangeability for your oscilloscope control program.
You can download the Infiniium IVI-COM driver and documentation for free
at the Agilent Developers Network, www.agilent.com/find/adn.

With the My Infiniium Integration Package, your programs become an
integral part of the oscilloscope. In fact, if you are currently running a
custom analysis program on an external PC, it is very easy to move it into
your oscilloscope using My Infiniium. If you are not experienced with using
1-4

E2699A My Infiniium Integration Package Features
QuickExecute and Extensible Graphical User Interface
applications programs with your Infiniium, Agilent provides some example
programs to help you become familiar with the capabilities and benefits of
My Infiniium. These programs also illustrate the wide variety of actions that
are possible using My Infiniium.

Example 1 - Scripting GPIB Commands

This example uses the ExecuteGpibScript.exe program, with the command
file SaveAll.gpb. ExecuteGpibScript is a generic tool for executing groups
of GPIB commands. The commands contained in SaveAll.gpb are shown
below:

 :Stop

 :Disk:Store Chan1,"c:\scope\data\Acq%d_Ch1.csv",Text,XYPairs,On;
 :Disk:Store Chan2,"c:\scope\data\Acq%d_Ch2.csv",Text,XYPairs,On;
 :Disk:Store Chan3,"c:\scope\data\Acq%d_Ch3.csv",Text,XYPairs,On;
 :Disk:Store Chan4,"c:\scope\data\Acq%d_Ch4.csv",Text,XYPairs,On;

 :Disk:Store Setup,"c:\scope\data\Acq%d.set";
 :Disk:SImage "c:\scope\data\Acq%d.bmp",BMP,Screen,On,Normal;

When ExecuteGpibScript.exe is mapped to QuickExecute or an eGUI menu
item, these commands cause Infiniium to store all four channels of data as
well as the scope setup and screen image to a set of files on the hard disk.
The %d represents a numerical value that increments each time the script
is run. The starting value can be set from the Customize QuickMeas+ dialog
as shown in Figure 1-2.
1-5

E2699A My Infiniium Integration Package Features
QuickExecute and Extensible Graphical User Interface
Figure 1-2

Increment Control

Considering that nearly all of Infiniium’s capabilities are controllable using

GPIB, it should be clear that many valuable control sequences are possible
using

ExecuteGpibScript.exe in this manner.

Example 2 - Mapping A Control To The Front Panel

This example uses a short C program, StepAveraging.cpp, to map a
frequently used control to the oscilloscope’s front panel for quick access.
The source code is show below:

Starting value of %d
parameter.
1-6

E2699A My Infiniium Integration Package Features
QuickExecute and Extensible Graphical User Interface
/* StepAveraging.cpp -- Sample QuickExecute application that steps through
 several levels of averaging for fast viewing comparisons.
*/

#include <windows.h>
#include <sicl.h>

static INST Scope = 0;

static void ErrorHandler(INST Inst, int Error)
{
 /* This routine traps any I/O errors, so we don’t have to check
 the return values of individual function calls.
 */

 char Text[1024];

 strcpy(Text, "This program has experienced a problem communicating \n");
 strcat(Text, "with the oscilloscope application. (The error string is: \n");
 strcat(Text, igeterrstr(Error));
 strcat(Text, ").");

 MessageBox(NULL, Text, GetCommandLine(), MB_ICONEXCLAMATION);

 ionerror(0); /* Clear the error handler. */
 iclose(Scope); /* Close the session. */

 exit(EXIT_FAILURE);
}

static void WriteString(char *String)
{
 /* Write a command or query to the oscilloscope. */

 iwrite(Scope, String, strlen(String), 1, NULL);
}

static void ReadString(char *String)
{
 /* Read query results back from the oscilloscope. */

 unsigned long ActualCount = 0;

 iread(Scope, String, strlen(String), NULL, &ActualCount);

 String[ActualCount - 1] = ’\0’;
}

1-7

E2699A My Infiniium Integration Package Features
QuickExecute and Extensible Graphical User Interface
int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{
 char StateQueryResults[16];
 char NumberQueryResults[16];
 int NumberOfAverages;

 ionerror(ErrorHandler); /* Install the error handler. */
 itimeout(Scope, 10000); /* Set the timeout value in milliseconds. */
 WriteString("*CLS"); /* Clear the error queue. */

 Scope = iopen("lan[localhost]:hpib7,7"); /* Open the session. */

 WriteString("SYSTEM:HEADER OFF");

 WriteString("ACQUIRE:AVERAGE?");
 ReadString(StateQueryResults);

 /* Cycle through 0, 4, 32, and 256 averages on successive invocations. */
 if (StateQueryResults[0] == ’0’)
 {
 WriteString("ACQUIRE:AVERAGE:COUNT 4");
 WriteString("ACQUIRE:AVERAGE ON");
 }
 else
 {
 WriteString("ACQUIRE:AVERAGE:COUNT?");
 ReadString(NumberQueryResults);
 NumberOfAverages = atoi(NumberQueryResults);
 if (NumberOfAverages <= 4)
 {
 WriteString("ACQUIRE:AVERAGE:COUNT 32");
 WriteString("ACQUIRE:AVERAGE ON");
 }
 else if (NumberOfAverages <= 32)
 {
 WriteString("ACQUIRE:AVERAGE:COUNT 256");
 WriteString("ACQUIRE:AVERAGE ON");
 }
 else
 {
 WriteString("ACQUIRE:AVERAGE OFF");
 }
 }
 iclose(Scope);
 return EXIT_SUCCESS;
}

1-8

E2699A My Infiniium Integration Package Features
QuickExecute and Extensible Graphical User Interface
As the comments indicate, this program steps the oscilloscope through 0,
4, 32, and 256 levels of averaging for fast viewing comparisons. This
program can be used as a pattern or template for accomplishing similar
control mappings that may be desired for specific measurement situations.
Also included as an example program with My Infiniium which is similar to
StepAveraging.cpp and is called ToggleAveraging.cpp. Instead of stepping
through successive levels of averaging, ToggleAveraging.cpp toggles
averaging on or off using the front panel QuickMeas+ key.

Example 3 - Creating a Dialog Box with Custom Measurement

Results

This example program, SlewRate.cpp, is a C program that performs a slew
rate measurement and displays the result in a dialog box on the Infiniium
display. The source code is shown below:

// SlewRate.cpp -- Sample Infiniium eGUI application using
// VISA and the Agilent I/O Libraries.
//
// Usage: SlewRate [n]
// where n = channel number (default is 1)
//
// This program measures and displays the slew rate of the given channel
// based on the current upper and lower threshold voltages.
//
// To use this program as a template for similar operations, change the code
// in the last function listed here, PerformAction. All other functions may
// be directly reused. Remember to rename the program appropriately.
//
// This listing is provided as an example only without expressed or
// implied warranties.
//

#include <windows.h>
#include <stdio.h>
#include <math.h>
#include <visa.h>

#define SHORTBUF 80
#define LONGBUF 1024
#define SCOPE_ADDRESS "GPIB0::7::INSTR"
#define TIMEOUT_SECONDS 10
static const char *WindowTitle = "Measure Slew Rate";
static const int GOOD_RESULT = 0;
static const int BAD_RESULT = 4;
static ViSession Scope = VI_NULL;
static void PerformAction(char *CommandLineArgs);
1-9

E2699A My Infiniium Integration Package Features
QuickExecute and Extensible Graphical User Interface
//************************* ErrorHandler *********************************
//
// Description: The error handler for all Agilent I/O Library calls.
// If an error occurs, it is trapped here and reported to the
// user before the program terminates. This allows us to avoid
// checking the return values of individual I/O call for errors.
//
// Parameters: Session -- the VISA session identifier.
// EventType -- the logical event identifier.
// Event -- the event handle.
// UserHandle -- user handle for this event and session.
//
// Returns: VI_SUCCESS for successful handling.
//
// Note: It is critical that _VI_FUNCH be included in the declaration
// for proper stack cleanup.
//

static ViStatus _VI_FUNCH ErrorHandler(ViSession Session,
 ViEventType EventType,
 ViEvent Event,
 ViAddr UserHandle)
{
 ViStatus ErrorNumber;
 char FunctionName[LONGBUF];
 char ErrorString[LONGBUF];

 // Fetch the error value and the function name.
 viGetAttribute(Event, VI_ATTR_STATUS, &ErrorNumber);
 viGetAttribute(Event, VI_ATTR_OPER_NAME, FunctionName);

 // Map the error number to an error description.
 ErrorString[0] = ’\0’;
 viStatusDesc(Session, ErrorNumber, ErrorString);

 // Tell the user what happened.
 char Title[LONGBUF];
 char *CommandLine = ::GetCommandLine();
 strcpy(Title, "Error executing ");
 strcat(Title, CommandLine);

 char Text[LONGBUF];
 strcpy(Text, "This program has experienced a problem communicating ");
 strcat(Text, "with the oscilloscope application.\n");
 strcat(Text, "(The I/O function is: \"");
 strcat(Text, FunctionName);
 strcat(Text, "\", and the error string is: \n");
 strcat(Text, "\"");
1-10

E2699A My Infiniium Integration Package Features
QuickExecute and Extensible Graphical User Interface
 strcat(Text, ErrorString);
 strcat(Text, "\".) \n\n");
 strcat(Text, "Please make sure the Agilent I/O Libraries are installed ");
 strcat(Text, "and configured correctly.");

 MessageBox(NULL, Text, Title, MB_OK | MB_ICONEXCLAMATION);

 exit(EXIT_FAILURE);

 // This point is never reached but it makes the compiler happy.
 return VI_SUCCESS;
}

//** WriteString

//
// Description: Send a command or query string to the oscilloscope.
//
// Parameters: String -- the character string to write out.
//

static void WriteString(char *String)
{
 viWrite(Scope, (unsigned char *)String, strlen(String), VI_NULL);
}

//*** ReadString

//
// Description: Read query results back from the oscilloscope.
//
// Parameters: String -- a buffer to place the results into.
// MaxChars -- the size of the buffer.
//

static void ReadString(char *String, int MaxChars)
{
 unsigned long ActualCount = 0;

 viRead(Scope, (unsigned char *)String, MaxChars, &ActualCount);

 String[ActualCount - 1] = ’\0’;
}

1-11

E2699A My Infiniium Integration Package Features
QuickExecute and Extensible Graphical User Interface
//** WinMain

//
// Description: The entry point for the program.
//
// Parameters: hInstance -- the handle to this instance of the program.
// hPrevInstance -- the handle to the previous program instance.
// lpCmdLine -- pointer to the command line characters.
// nCmdShow -- the show state for the program.
//
// These parameters are not typically required for Infiniium
// programs, though lpCmdLine can be useful. See the
// Windows (tm) documentation for more details if required.
//
// Returns: EXIT_SUCCESS for successful completion, EXIT_FAILURE otherwise.
//

int APIENTRY WinMain(HINSTANCE hInstance,
 HINSTANCE hPrevInstance,
 LPSTR lpCmdLine,
 int nCmdShow)
{
 ViSession ResourceMgr;

 // Initialize the interface to the oscilloscope.
 viOpenDefaultRM(&ResourceMgr);
 viInstallHandler(ResourceMgr, VI_EVENT_EXCEPTION, ErrorHandler, VI_NULL);
 viEnableEvent(ResourceMgr, VI_EVENT_EXCEPTION, VI_HNDLR, VI_NULL);

 viOpen(ResourceMgr, SCOPE_ADDRESS, VI_NULL, VI_NULL, &Scope);
 viInstallHandler(Scope, VI_EVENT_EXCEPTION, ErrorHandler, VI_NULL);
 viEnableEvent(Scope, VI_EVENT_EXCEPTION, VI_HNDLR, VI_NULL);

 viSetAttribute(Scope, VI_ATTR_TMO_VALUE, TIMEOUT_SECONDS * 1000);
 viClear(Scope);

 WriteString("*CLS");
 WriteString("SYSTEM:HEADER OFF");

 // Take action as appropriate for this program.
 PerformAction(lpCmdLine);

 // Clean up.
 viDisableEvent(Scope, VI_EVENT_EXCEPTION, VI_HNDLR);
 viUninstallHandler(Scope, VI_EVENT_EXCEPTION, ErrorHandler, VI_NULL);
 viClose(Scope);
1-12

E2699A My Infiniium Integration Package Features
QuickExecute and Extensible Graphical User Interface
 viDisableEvent(ResourceMgr, VI_EVENT_EXCEPTION, VI_HNDLR);
 viUninstallHandler(ResourceMgr, VI_EVENT_EXCEPTION, ErrorHandler, VI_NULL);
 viClose(ResourceMgr);

 return EXIT_SUCCESS;
}

//*** GetChannel

//
// Description: Helper function for PerformAction below. Determine the
// channel to make the measurement on, using the command-line
// parameter if it was passed and is valid.
//
// Returns: An integer from 1-4 indicating the channel, defaults to 1.
// Channels greater than 4 are mapped down into the 1-4 range.
//

static int GetChannel(char *CommandLineArgs)
{
 int Channel = 1;

 if (CommandLineArgs != NULL)
 {
 Channel = atoi(CommandLineArgs);

 if (Channel < 1)
 {
 Channel = 1;
 }
 else if (Channel > 4)
 {
 // Wrap 5-8, 9-12, 13-16, etc. all down to 1-4.
 Channel = ((Channel - 1) % 4) + 1;
 }
 }

 return Channel;
}

1-13

E2699A My Infiniium Integration Package Features
QuickExecute and Extensible Graphical User Interface
//*********************** MakeMeasurement ********************************
//
// Description: Helper function for PerformAction below. Make one of the
// measurements we need in order to calculate the slew rate.
//
// Parameters: QueryString -- the scope query for making the measurement.
// MeasResults -- the numerical measurement result.
//
// Returns: The measurement status code from the scope.
//
// A value of 0 means a valid result, values from 1-3 indicate
// questionable results, and values greater than or equal to 4
// indicate an error of some sort. See the scope Programmer’s
// Reference for details.
//

static int MakeMeasurement(char *QueryString,
 double *MeasResults)
{
 // We need these two values to differentiate from valid atoi and atof
 // conversions that return zero, and invalid ones, which unfortunately
 // also return zero.

 static const char *ZeroFloat = "0.0E+00";
 static const char *ZeroInt = "0";

 int StatusCode = BAD_RESULT;
 char RawResults[SHORTBUF];

 WriteString("*CLS");
 WriteString(QueryString);
 ReadString(RawResults, SHORTBUF);

 char *ResultsString = strtok(RawResults, ",");
 char *StatusString = strtok(NULL, " ");

 if (StatusString != NULL)
 {
 StatusCode = atoi(StatusString);
 if (StatusCode == 0 && strcmp(StatusString, ZeroInt))
 {
 StatusCode = BAD_RESULT;
 }
 }
1-14

E2699A My Infiniium Integration Package Features
QuickExecute and Extensible Graphical User Interface
 if (StatusCode < BAD_RESULT)
 {
 if (ResultsString != NULL)
 {
 *MeasResults = atof(ResultsString);
 if (*MeasResults == 0.0 && strcmp(ResultsString, ZeroFloat))
 {
 StatusCode = BAD_RESULT;
 }
 }
 }

 return StatusCode;
}

//*********************** ScalingInfo ************************************
//
// Description: Not a function, but some data used by FormatResults below.
// This allows us to display the slew rate results with the
// correct SI prefix, for example V/ns or V/us, depending on
// its magnitude.
//

static const int N_PREFIXES = 11;
static const int NO_PREFIX = 5;

struct tScalingInfo
{
 double LowerLimit;
 double UpperLimit;
 double Multiplier;
 char PrefixString[2];
};

static const tScalingInfo ScalingInfo[N_PREFIXES] =
{ 1E-15, 1E-12, 1E+15, "P",
 1E-12, 1E-9, 1E+12, "T",
 1E-9, 1E-6, 1E+9, "G",
 1E-6, 1E-3, 1E+6, "M",
 1E-3, 1E+0, 1E+3, "k",
 1E+0, 1E+3, 1E+0, "" ,
 1E+3, 1E+6, 1E-3, "m",
 1E+6, 1E+9, 1E-6, "u",
 1E+9, 1E+12, 1E-9, "n",
 1E+12, 1E+15, 1E-12, "p",
 1E+15, 1E+18, 1E-15, "f"
};
1-15

E2699A My Infiniium Integration Package Features
QuickExecute and Extensible Graphical User Interface
//********************** FormatResults ***********************************
//
// Description: Helper function for PerformAction below. Format the
// numerical slew rate value into a presentable format,
// including the correct units and prefix.
//
// Parameters: SlewRate -- the valid, numerical slew rate measurement.
// Channel -- the number (1-4) of the channel that was measured.
// FormattedResults -- a string to hold the formatted results.
//

static void FormatResults(double SlewRate,
 int Channel,
 char *FormattedResults)
{
 // Fetch the units from the scope.
 char UnitsQuery[SHORTBUF];
 char Units[SHORTBUF];

 sprintf(UnitsQuery, "CHAN%d:UNITS?", Channel);
 WriteString(UnitsQuery);
 ReadString(Units, SHORTBUF);

 // Now scale and format the results.
 double ScaledResults = SlewRate;
 double AbsResults = fabs(SlewRate);

 int i = 0;
 BOOL Found = FALSE;

 while (i < N_PREFIXES && !Found)
 {
 Found = (AbsResults >= ScalingInfo[i].LowerLimit &&
 AbsResults < ScalingInfo[i].UpperLimit);
 i++;
 }
1-16

E2699A My Infiniium Integration Package Features
QuickExecute and Extensible Graphical User Interface
 if (Found)
 {
 i--;
 }
 else
 {
 // Make sure to provide for cases that are outside the table,
 // as well as the special "exactly 0" case.
 if (AbsResults > 0.0 && AbsResults < ScalingInfo[0].LowerLimit)
 {
 i = 0;
 }
 else if (AbsResults >= ScalingInfo[N_PREFIXES - 1].UpperLimit)
 {
 i = N_PREFIXES - 1;
 }
 else
 {
 i = NO_PREFIX;
 }
 }

 ScaledResults *= ScalingInfo[i].Multiplier;

 sprintf(FormattedResults, "%.2f %c/%ss",
 ScaledResults,
 Units[0],
 ScalingInfo[i].PrefixString);
}

//******************* PerformAction *************************************
//
// Description: This is a generalized routine for taking action based on
// the requirements of the program. In this case we are
// calculating the slew rate of one of the scope’s channels.
//

static void PerformAction(char *CommandLineArgs)
{
 // Make the three measurements that we need. We need to stop the scope
 // so that all measurements are performed on the same acquisition data.
 int Channel = GetChannel(CommandLineArgs);
 double Risetime, Vlower, Vupper;

 WriteString("STOP");
 WriteString("MEASURE:SENDVALID ON");

 char RisetimeQuery[SHORTBUF];
1-17

E2699A My Infiniium Integration Package Features
QuickExecute and Extensible Graphical User Interface
 char VlowerQuery[SHORTBUF];
 char VupperQuery[SHORTBUF];

 sprintf(RisetimeQuery, "MEASURE:RISETIME? CHAN%d", Channel);
 sprintf(VlowerQuery, "MEASURE:VLOWER? CHAN%d", Channel);
 sprintf(VupperQuery, "MEASURE:VUPPER? CHAN%d", Channel);

 int RisetimeResultCode = MakeMeasurement(RisetimeQuery, &Risetime);
 int VlowerResultCode = MakeMeasurement(VlowerQuery, &Vlower);
 int VupperResultCode = MakeMeasurement(VupperQuery, &Vupper);

 // Calculate the slew rate if possible and format the results.
 double SlewRate;
 char ResultString[LONGBUF];

 sprintf(ResultString, "Slew rate (%d) ", Channel);

 if (RisetimeResultCode >= BAD_RESULT ||
 VlowerResultCode >= BAD_RESULT ||
 VupperResultCode >= BAD_RESULT)
 {
 strcat(ResultString, "cannot be calculated.");
 strcat(ResultString, "\nPlease verify that the channel is");
 strcat(ResultString, "\ndisplayed and scaled correctly.");
 }
 else
 {
 SlewRate = (Vupper - Vlower) / Risetime;
 if (RisetimeResultCode == GOOD_RESULT &&
 VlowerResultCode == GOOD_RESULT &&
 VupperResultCode == GOOD_RESULT)
 {
 strcat(ResultString, "= ");
 }
 else
 {
 strcat(ResultString, "? ");
 }

 char FormattedResults[LONGBUF];
 FormatResults(SlewRate, Channel, FormattedResults);
 strcat(ResultString, FormattedResults);
 }
 // Finally display the results to the user.
 MessageBox(NULL, ResultString, WindowTitle, MB_OK);
}

1-18

E2699A My Infiniium Integration Package Features
QuickExecute and Extensible Graphical User Interface
Example 4 - The Snapshot Measurement Utility

The final example involves a more complete measurement utility called
Snapshot.exe. The source code for Snapshot is not provided but the
executable is provided. When mapped to QuickExecute or eGUI menu,
Snapshot provides a "measure all" capability on a source-by-source basis.
Each invocation advances the measurement source. A screen shot of
Snapshot’s results dialog is shown in Figure 1-3.

Figure 1-3

 Snapshot dialog box

Snapshot is a dialog-based MFC application that makes use of the GPIB
commands in Infiniium’s MEASURE subsystem. It is a good example of the
integration value of My Infiniium.
1-19

E2699A My Infiniium Integration Package Features
Adding Menu Items to Infiniium
Adding Menu Items to Infiniium

Menu items can be added to any of the existing Infiniium menus using the
eGUI feature of My Infiniium. However, menu items cannot be added to the
main menu bar. While you can add menu items to any menu, it is
recommended that you add menu items to the Analyze or Utilities menus.

Menu items must be added to the file eGUI.txt found in the
C:\SCOPE\CONFIG directory. This file is a text only ASCII file which can
be edited using any text editor.

The following is an example of adding a menu item for SnapShot.exe.
EGUI_ITEM_MENU
 MENU_PATH={MAIN\Measure\Snapshot}
 MENU_RUN={C:\scope\util\Snapshot.exe}
 MENU_RUN_ARGS={}
 MENU_POS={4}
 MENU_SEP={BEFORE}
 EGUI_FLAGS={ALLOW_MULTIPLE_RUNNING}
EGUI_END_ITEM;

Figure 1-4 shows the resulting menu item that was create by preceding text
in the eGUI.txt file.
1-20

E2699A My Infiniium Integration Package Features
Adding Menu Items to Infiniium
Figure 1-4

Example eGUI Menu Item

Explanations for these eGUI commands are contained in the “Reference
Guide” section of this manual.
1-21

1-22

2

Reference Guide

Reference Guide
Comment Entries
Comment Entries

Comment lines can be added to the eGUI.txt file by placing a # symbol at
the beginning of a line. For example:

This is a comment line.

EGUI_END_ITEM;

Keyword EGUI_END_ITEM;

A menu item must end with the EGUI_END_ITEM; keyword and must begin
with the EGUI_ITEM_MENU keyword. The semi-colon (;) is required for
this keyword.

EGUI_FLAGS

Keyword EGUI_FLAGS={<flags>}

The EGUI_FLAGS keyword is optional. When the EGUI_FLAGS keyword
is not used, then the default behavior for each of the flags is used. When
the EGUI_FLAGS keyword is used then the flag parameters are separated
by spaces.

<flags> SHOW_RUN_OPTIONS

When this option is used, a Run Options dialog box is displayed before your
program is run. This dialog box lets you choose a secondary monitor to
display the program you are running.

Default: The Run Options dialog box is not displayed.

ALLOW_MULTIPLE_RUNNING

Allows you to launch more than one copy of your program even if one copy
is already running.

Default: Only one copy of your program can be running. If you try to start
another copy running while one is currently running, the currently running
copy is brought to the top.
2-2

Reference Guide
EGUI_ITEM_MENU
LEAVE_RUNNING_AFTER _EXIT

If the oscilloscope application is exited, your program will remain running
if it was already running.

Default: When the oscilloscope application is exited, the last launched
running copy of your program is exited.

Example EGUI_FLAGS={SHOW_RUN_OPTIONS LEAVE_RUNNING_AFTER_EXIT}

EGUI_ITEM_MENU

Keyword EGUI_ITEM_MENU

A menu item must begin with the EGUI_ITEM_MENU keyword and must
end with the EGUI_END_ITEM; keyword.

MENU_PATH

Keyword MENU_PATH={<scope_menu><menu_item>}

The MENU_PATH keyword is required and is the place where you want
your menu item to appear in the Infiniium menu system. It is a good idea
to put your menu items in either the Analyze or the Utilities menus.

<scope_menu
> The Infiniium oscilloscope menu where you want to place your menu item.

For example:

MAIN\Analyze\

MAIN\Utilities\

<menu_item> The name that you want to appear in the menu. You can also include a
submenu if you do not want the menu item to appear in one of the main
Infiniium menus. If you use an ampersand (&) character in front of one of
the letters in a menu item, that letter is used as a shortcut key to the menu
item.

There are two types of menu items: terminal and nonterminal. Terminal
menu items look like the following.
MENU_PATH={MAIN\Analyze\My Menu Item}

Nonterminal menu items look like the following.
MENU_PATH={MAIN\Analyze\Sub Menu Item\}
2-3

Reference Guide
MENU_POS
Terminal menu items require you to use the MENU_RUN keyword while
nonterminal menu items do not require the MENU_RUN keyword. The
nonterminal menu items are used to add a sub menu item that does not
execute a command but can be used to add separators to the sub menu item.

Example MENU_PATH={MAIN\Utilities\My Submenu\My Menu Item}

The following picture shows the result of this keyword.

MENU_POS

Keyword MENU_POS={<menu_position>}

The MENU_POS keyword positions your menu item at a point in the menu
list specified by the <menu_position> parameter. The top position is
position number 0 (zero) with positive integers having menu locations
further down in the list. Minus integer values place the menu item at the
bottom of the list. The MENU_POS keyword is not required and when not
used the menu item is placed at the bottom of the menu list. It is
recommended that you place your menu items at the bottom of the list.
2-4

Reference Guide
MENU_RUN
<menu_
position> An integer from 0 (top) to maximum number (bottom) of list represents

the position of your menu item in the list.

Negative integers places the menu item at the bottom of the list.

Example MENU_POS={2}

MENU_RUN

Keyword MENU_RUN={<run_file>}

The MENU_RUN keyword specifies which program is launched when your
menu item is selected. This is a required keyword when a terminal path
has been specified by the MENU_PATH keyword.

<run_file> The path and file name of your executable program.

Example MENU_RUN={C:\scope\util\myprogram.exe}

MENU_RUN_ARG

Keyword MENU_RUN_ARG={<program_arg>}

The MENU_RUN_ARG specifies the program arguments that are passed to
your program when it is launched. This is not a required keyword and when
not used nothing is passed to the program.

<program_ar
g> An ASCII string of command line options to pass to your program.

Example MENU_RUN_ARG={/myarg}
2-5

Reference Guide
MENU_SEP
MENU_SEP

Keyword MENU_SEP={<option>}

The MENU_SEP keyword determines what menu separators are used
around your menu item. This keyword is not required and when not used
no separators are added around your menu item. If adding a menu separator
would cause more than one separator to be added before or after a menu
item then only one will be used.

<option> AFTER

A menu separator is added after your menu item.

BEFORE

A menu separator is added before your menu item.

BEFORE_AND_AFTER

A menu separator is added before and after your menu item.

NONE

No separators are used around your menu item.

Example MENU_SEP={BEFORE}

If you perform a reload of the eGUI.txt file while the oscilloscope is still running, it is
possible that the separator bars will not be exactly as you have specified. However,
if you restart the oscilloscope application, the separator bars will be in the correct
positions.
2-6

Reference Guide
Programming Tips and Rules
Programming Tips and Rules

1 You must reload the eGUI text file before your new menu item will
appear. This is done by selecting eGUI in the Utilities menu and
selecting the Reload eGUI button. See the following figure.

Figure 2-1

2 You must use upper case MAIN as the beginning of the menu path.
3 You may add multiple menu items by using multiple pairs of

EGUI_ITEM_MENU and EGUI_END_ITEM; keywords
4 Use VISA instead of SICL driver for Visual C++ programs. SICL is

simpler to use but VISA has the advantage that a program can be
executed unchanged on either a PC or internal to the oscilloscope.
2-7

2-8

Safety
Notices
This apparatus has been
designed and tested in accor-
dance with IEC Publication 1010,
Safety Requirements for Mea-
suring Apparatus, and has been
supplied in a safe condition.
This is a Safety Class I instru-
ment (provided with terminal for
protective earthing). Before
applying power, verify that the
correct safety precautions are
taken (see the following warn-
ings). In addition, note the
external markings on the instru-
ment that are described under
"Safety Symbols."

Warnings
• Before turning on the instru-
ment, you must connect the pro-
tective earth terminal of the
instrument to the protective con-
ductor of the (mains) power
cord. The mains plug shall only
be inserted in a socket outlet
provided with a protective earth
contact. You must not negate
the protective action by using an
extension cord (power cable)
without a protective conductor
(grounding). Grounding one
conductor of a two-conductor
outlet is not sufficient protec-
tion.

• Only fuses with the required
rated current, voltage, and spec-
ified type (normal blow, time
delay, etc.) should be used. Do
not use repaired fuses or short-
circuited fuseholders. To do so
could cause a shock or fire haz-
ard.

• If you energize this instrument
by an auto transformer (for volt-
age reduction or mains isola-
tion), the common terminal must
be connected to the earth termi-
nal of the power source.
Agilent Technologies Inc.
P.O. Box 2197
1900 Garden of the Gods Road
Colorado Springs, CO 80901-2197,
• Whenever it is likely that the
ground protection is impaired,
you must make the instrument
inoperative and secure it against
any unintended operation.

• Service instructions are for
trained service personnel. To
avoid dangerous electric shock,
do not perform any service
unless qualified to do so. Do not
attempt internal service or
adjustment unless another per-
son, capable of rendering first
aid and resuscitation, is present.

• Do not install substitute parts
or perform any unauthorized
modification to the instrument.

• Capacitors inside the instru-
ment may retain a charge even if
the instrument is disconnected
from its source of supply.

• Do not operate the instrument
in the presence of flammable
gasses or fumes. Operation of
any electrical instrument in such
an environment constitutes a
definite safety hazard.

• Do not use the instrument in a
manner not specified by the
manufacturer.

To clean the instrument
If the instrument requires clean-
ing: (1) Remove power from the
instrument. (2) Clean the exter-
nal surfaces of the instrument
with a soft cloth dampened with
a mixture of mild detergent and
water. (3) Make sure that the
instrument is completely dry
before reconnecting it to a
power source.
 U.S.A.
Safety Symbols

Instruction manual symbol: the
product is marked with this sym-
bol when it is necessary for you
to refer to the instruction man-
ual in order to protect against
damage to the product.

Hazardous voltage symbol.

Earth terminal symbol: Used to
indicate a circuit common con-
nected to grounded chassis.

!

Notices
© Agilent Technologies, Inc.

2003
No part of this manual may be
reproduced in any form or by
any means (including electronic
storage and retrieval or transla-
tion into a foreign language)
without prior agreement and
written consent from Agilent
Technologies, Inc. as governed
by United States and interna-
tional copyright laws.

Manual Part Number
E2699-97001, October 2003

Print History
E2699-97001, October 2003
E2699-97000, August 2003

Restricted Rights Legend
If software is for use in the per-
formance of a U.S. Government
prime contract or subcontract,
Software is delivered and
licensed as “Commercial com-
puter software” as defined in
DFAR 252.227-7014 (June 1995),
or as a “commercial item” as
defined in FAR 2.101(a) or as
“Restricted computer software”
as defined in FAR 52.227-19
(June 1987) or any equivalent
agency regulation or contract
clause. Use, duplication or dis-
closure of Software is subject to
Agilent Technologies’ standard
commercial license terms, and
non-DOD Departments and
Agencies of the U.S. Govern-
ment will receive no greater
than Restricted Rights as
defined in FAR 52.227-19(c)(1-2)
(June 1987). U.S. Government
users will receive no greater
than Limited Rights as defined in
FAR 52.227-14 (June 1987) or
DFAR 252.227-7015 (b)(2)
(November 1995), as applicable
in any technical data.
Document Warranty
The material contained in
this document is provided
“as is,” and is subject to
being changed, without
notice, in future editions.
Further, to the maximum
extent permitted by applica-
ble law, Agilent disclaims
all warranties, either
express or implied, with
regard to this manual and
any information contained
herein, including but not
limited to the implied war-
ranties of merchantability
and fitness for a particular
purpose. Agilent shall not be
liable for errors or for inci-
dental or consequential
damages in connection with
the furnishing, use, or per-
formance of this document
or of any information con-
tained herein. Should Agi-
lent and the user have a
separate written agreement
with warranty terms cover-
ing the material in this docu-
ment that conflict with these
terms, the warranty terms in
the separate agreement
shall control.

Technology Licenses
The hardware and/or software
described in this document are
furnished under a license and
may be used or copied only in
accordance with the terms of
such license.
WARNING

A WARNING notice
denotes a hazard. It calls
attention to an operating
procedure, practice, or
the like that, if not
correctly performed or
adhered to, could result
in personal injury or
death. Do not proceed
beyond a WARNING
notice until the indicated
conditions are fully
understood and met.

CAUTION

A CAUTION notice
denotes a hazard. It calls
attention to an operating
procedure, practice, or
the like that, if not
correctly performed or
adhered to, could result in
damage to the product or
loss of important data. Do
not proceed beyond a
CAUTION notice until the
indicated conditions are
fully understood and met.
Trademark Acknowledgements
Windows and MS Windows are
U.S. registered trademarks of
Microsoft Corporation.

	E2699A My Infiniium Integration Package Features
	Checking for the Installed License
	QuickExecute and Extensible Graphical User Interface
	Example 1 - Scripting GPIB Commands
	Example 2 - Mapping A Control To The Front Panel
	Example 3 - Creating a Dialog Box with Custom Measurement Results
	Example 4 - The Snapshot Measurement Utility

	Adding Menu Items to Infiniium

	Reference Guide
	Comment Entries
	EGUI_END_ITEM;
	EGUI_FLAGS
	EGUI_ITEM_MENU
	MENU_PATH
	MENU_POS
	MENU_RUN
	MENU_RUN_ARG
	MENU_SEP
	Programming Tips and Rules

